
–1–

• Enough theory (for now: more to come later!)
• To look at the data: type cd AFNI_data3/afni ; then afni
• Switch Underlay to dataset epi_r1

 Then Axial Image and Graph
 FIM→Pick Ideal ; then click afni/epi_r1_ideal.1D ; then Set
 Right-click in image, Jump to (ijk), then 22 43 12, then Set

Sample Data Analysis: Simple Regression

• Data clearly has
activity in sync with
reference

o 30 s blocks
• Data also has a big
spike, which is very
annoying

o Subject head
movement!

–2–

Preparing Data for Analysis
• Six preparatory steps are common:

 Temporal alignment: program 3dtshift
 Image registration (AKA realignment): program 3dvolreg
 Image smoothing: program 3dmerge
 Image masking: program 3dClipLevel or 3dAutomask
 Conversion to percentile: programs 3dTstat and
3dcalc

 Censoring out time points that are bad: program
3dToutcount or 3dTqual

• Not all steps are necessary or desirable in any given case
• In this first example, will only do registration, since the data
obviously needs this correction

–3–

Data Analysis Script
• In file epi_r1_regress:
3dvolreg -base 3 \
 -verb \
 -prefix epi_r1_reg \
 -1Dfile epi_r1_mot.1D \
 epi_r1+orig

3dDeconvolve \
 -input epi_r1_reg+epi_r1_reg+origorig \
 -nfirst 3 \
 -num_stimts 1 \
 -stim_times 1 epi_r1_times.1Depi_r1_times.1D \
 'BLOCK(30)' \
 -stim_label 1 AllStim \
 -tout \
 -bucket epi_r1_func \
 -fitts epi_r1_fitts \
 -xjpeg epi_r1_Xmat.jpg \
 -x1D epi_r1_Xmat.x1D

• 3dvolreg (3D image registration)
will be covered in detail in a later
presentation
• filename to get estimated motion parameters

• 3dDeconvolve = regression code

• Name of input dataset (from 3dvolreg)
• Index of first sub-brick to process [skipping #0-2]
• Number of input model time series
• Name of input stimulus class timing file (τ’s)

• and type of HRF model to fit
• Name for results in AFNI menus
• Indicates to output t-statistic for β weights
• Name of output “bucket” dataset (statistics)
• Name of output model fit dataset
• Name of image file to store X [AKA R] matrix
• Name of text file in which to store X matrix

• Type tcsh epi_r1_regress ; then wait for programs to run

–4– Text Output of the epi_r1_decon script
• 3dvolreg3dvolreg output
++ 3dvolreg: AFNI version=AFNI_2007_05_29_1644 (Sep 5 2007) [64-bit]
++ Reading input dataset ./epi_r1+orig.BRIK
++ Edging: x=3 y=3 z=2
++ Initializing alignment base
++ Starting final pass on 67 sub-bricks: 0..1..2..3.. *** ..63..64..65..66..
++ CPU time for realignment=5.35 s [=0.0799 s/sub-brick]
++ Min : roll=-0.103 pitch=-1.594 yaw=-0.038 dS=-0.354 dL=-0.021 dP=-0.191
++ Mean: roll=-0.047 pitch=+0.061 yaw=+0.023 dS=+0.006 dL=+0.032 dP=-0.076
++ Max : roll=+0.065 pitch=+0.290 yaw=+0.055 dS=+0.050 dL=+0.120 dP=+0.113
++ Max displacement in automask = 2.46 (mm) at sub-brick 42
++ Wrote dataset to disk in ./epi_r1_reg+orig.BRIK

•• 3dDeconvolve3dDeconvolve output
++3dDeconvolve: AFNI version=AFNI_2007_05_29_1644 (Sep 5 2007) [64-bit]
++ Authored by: B. Douglas Ward, et al.
++ loading dataset epi_r1_reg+orig
*+ WARNING: Input polort=1; Longest run=201.0 s; Recommended minimum polort=2
++ -stim_times using TR=3 seconds
++ '-stim_times 1' using LOCAL times
++ Wrote matrix image to file epi_r1_Xmat.jpg
++ Wrote matrix values to file epi_r1_Xmat.x1D
++ Signal+Baseline matrix condition [X] (64x3): 2.59165 ++ VERY GOOD ++
++ Signal-only matrix condition [X] (64x1): 1 ++ VERY GOOD ++
++ Baseline-only matrix condition [X] (64x2): 1.08449 ++ VERY GOOD ++
++ -polort-only matrix condition [X] (64x2): 1.08449 ++ VERY GOOD ++
++ Matrix inverse average error = 5.62791e-16 ++ VERY GOOD ++
++ Calculations starting; elapsed time=0.238
++ voxel loop:0123456789.0123456789.0123456789.0123456789.0123456789.
++ Calculations finished; elapsed time=1.417
++ Wrote bucket dataset into ./epi_r1_func+orig.BRIK
++ Wrote 3D+time dataset into ./epi_r1_fitts+orig.BRIK
++ #Flops=3.11955e+08 Average Dot Product=4.50251

• If a program crashes, we’ll need to see this text output (at the very least)!

} Output file indicators

} Progress meter / pacifier

} Maximum movement estimate

} Output file indicators

} Matrix Quality
Assurance

} Consider '-polort 2'

–5–

Stimulus Timing: Input and Visualization
epi_r1_times.1D = 9.0 69.0 129.0

 = times of start of each BLOCK(20)

epi_r1_Xmat.jpg 1dplot -sepscl epi_r1_Xmat.x1D

• HRF⊗timing

• Linear in t

• All ones

X matrix
columns

–6–

Look at the Activation Map
• Run afni to view what we’ve got (note: a subtle test over only 1 run)

 Switch Underlay to epi_r1_reg (output from 3dvolreg)
 Switch Overlay to epi_r1_func (output from 3dDeconvolve)
 Sagittal Image and Graph viewers
 FIM→Ignore→3 to have graph viewer not plot 1st 3 time pts
 FIM→Pick Ideal ; pick epi_r1_ideal.1D (output from waver)

• Define Overlay to set up functional coloring
 Olay→Allstim[0] Coef (sets coloring to be from model fit β)
 Thr→Allstim[0] t-s (sets threshold to be model fit t-statistic)
 See Overlay (otherwise won’t see the function!)
 Play with threshold slider to get a meaningful activation map (e.g., t =3 is

a decent threshold — more on thresholds later)
Again, use Jump to (i j k) to jump to index coordinates 22 43 12

–7–

More Looking at the Results
• Graph viewer: Opt→Tran 1D→Dataset #N to plot the model
fit dataset output by 3dDeconvolve
• Will open the control panel for the Dataset #N plugin
• Click first Input on ; then choose Dataset epi_r1_fitts+orig
• Also choose Color dk-blue to get a pleasing plot
• Then click on Set+Close (to close the plugin’s control panel)
• Should now see fitted time series in the graph viewer
instead of data time series

• Graph viewer: click Opt→Double Plot→Overlay on to
make the fitted time series appear as an overlay curve

• This tool lets you visualize the quality of the data fit
• Can also now overlay function on MP-RAGE anatomical by
using Switch Underlay to anat+orig dataset
• Probably won’t want to graph the anat+orig dataset!

–8–

Setting the Threshold: Principles
• Bad things (i.e., errors):
• False positives — activations reported that aren’t
really there ≡ Type I errors (i.e., activations from noise-
only data)
• False negatives — non-activations reported where
there should be true activations found ≡ Type II
errors

• Usual approach in statistical testing is to control the
probability of a type I error (the “p -value”)
• In FMRI, we are making many statistical tests: one
per voxel (≈ 20,000+) — the result of which is an
“activation map”:
• Voxels are colorized if they survive the statistical
thresholding process

Start of Important Aside

–9–

Setting the Threshold: Bonferroni
• If we set the threshold so there is a 1% chance that
any given voxel is declared “active” even if its data is
pure noise (FMRI jargon: “uncorrected” p-value is 0.01):
• And assume each voxel’s noise is independent of
its neighbors (not really true)
• With 20,000 voxels to threshold, would expect to
get 200 false positives — this may be as many as
the true activations! Situation: Not so good.

• Bonferroni solution: set threshold (e.g., on t -statistic) so
high that uncorrected p -value is 0.05/20000=2.5e-6
• Then have only a 5% chance that even a single
false positive voxel will be reported
• Objection: will likely lose weak areas of activation

Important Aside

–10–

Setting the Threshold: Spatial Clustering
• Cluster-based detection lets us lower the statistical
threshold and still control the false positive rate
• Two thresholds:
• First: a per-voxel threshold that is somewhat low
(so by itself leads to a lot of false positives, scattered around)
• Second: form clusters of spatially contiguous
(neighboring) voxels that survive the first threshold,
and keep only those clusters above a volume
threshold — e.g., we don’t keep isolated “active” voxels

• Usually: choose volume threshold, then calculate
voxel-wise statistic threshold to get the overall
“corrected” p -value you want (typically, corrected p =0.05)

• No easy formulas for this type of dual thresholding, so must
use simulation: AFNI program AlphaSim

Important Aside

–11–

AlphaSim: Clustering Thresholds

Uncorrected
p-value

 (per voxel)
0.0002
0.0004
0.0007
0.0010
0.0020
0.0030
0.0040
0.0050
0.0060
0.0070
0.0080
0.0090
0.0100

Cluster Size
/ Corrected p
(uncorrelated)

2 / 0.001
2 / 0.008
2 / 0.026
3 / 0.001
3 / 0.003
3 / 0.008
3 / 0.018
3 / 0.030
4 / 0.003
4 / 0.004
4 / 0.006
4 / 0.010
4 / 0.015

• Simulated for brain mask of 18,465 voxels
• Look for smallest cluster with corrected p < 0.05

Cluster Size
/ Corrected p

(correlated 5 mm)
3 / 0.004
4 / 0.012
3 / 0.031
4 / 0.007
4 / 0.032
5 / 0.013
5 / 0.029
6 / 0.012
6 / 0.023
6 / 0.036
7 / 0.016
7 / 0.027
7 / 0.042

Corresponds
to sample data

Can make
activation
maps for
display with
cluster editing
using 3dmerge
program or in
AFNI GUI
(new: Sep 2006)

End of Important Aside

–12–

Multiple Stimulus Classes
• The experiment analyzed here in fact is more complicated

 There are 9 related communication stimulus types in a 3x3 design of
Category by Affect (stimuli are shown to subject as pictures)

o Telephone, Email & Face-to-face = categories
o Negative, Positive & Neutral = affects

 telephone stimuli: tneg, tpos, tneu
email stimuli: eneg, epos, eneu
 face-to-face stimuli: fneg, fpos, fneu

 Each stimulus type has 3 presentation blocks of 30 s duration
 Scrambled pictures are shown between blocks
 9 imaging runs, 64 useful time points in each

o Originally, 67 TRs per run, but skip first 3 for MRI signal to reach
steady state

o So 576 TRs of data, in total
 Already registered and put together into dataset rall_vr+orig

–13–

Regression with Multiple Model Files
• Script file rall_decon does the job:
• Run this script by typing tcsh rall_decon (takes a few minutes)

• try to use 2 CPUs
• run indices

• stimulus times
• '|' indicates new run
• response model

3dDeconvolve -input rall_vr+orig \
 -jobs 2 \
 -concat '1D: 0 64 128 192 256 320 384 448 512' \
 -num_stimts 15 \
 -stim_times 1 '1D: 0 * | | | 120 | | | | | 60' 'BLOCK(30)' \
 -stim_times 2 '1D: * * | | 120 | | 0 | | | | 120' 'BLOCK(30)' \
 -stim_times 3 '1D: * * | 120 | | 60 | | | | | 0' 'BLOCK(30)' \
 -stim_times 4 '1D: 60 * | | | | | 120 | 0 | |' 'BLOCK(30)' \
 -stim_times 5 '1D: * * | 60 | | 0 | | | 120 | |' 'BLOCK(30)' \
 -stim_times 6 '1D: * * | | 0 | | 60 | | | 60 |' 'BLOCK(30)' \
 -stim_times 7 '1D: * * | 0 | | | 120 | | 60 | |' 'BLOCK(30)' \
 -stim_times 8 '1D: 120 * | | | | | 60 | | 0 |' 'BLOCK(30)' \
 -stim_times 9 '1D: * * | | 60 | | | 0 | | 120 |' 'BLOCK(30)' \
 -stim_label 1 tneg -stim_label 2 tpos -stim_label 3 tneu \
 -stim_label 4 eneg -stim_label 5 epos -stim_label 6 eneu \
 -stim_label 7 fneg -stim_label 8 fpos -stim_label 9 fneu \

• stimulus label

continued …

–14–

Regression with Multiple Model Files (continued)

• motion regressor
• apply to baseline

 -stim_file 10 motion.1D'[0]' -stim_base 10 \
 -stim_file 11 motion.1D'[1]' -stim_base 11 \
 -stim_file 12 motion.1D'[2]' -stim_base 12 \
 -stim_file 13 motion.1D'[3]' -stim_base 13 \
 -stim_file 14 motion.1D'[4]' -stim_base 14 \
 -stim_file 15 motion.1D'[5]' -stim_base 15 \
 -gltsym 'SYM: tpos -epos' -glt_label 1 TPvsEP \
 -gltsym 'SYM: tpos -tneg' -glt_label 2 TPvsTNg \
 -gltsym 'SYM: tpos tneu tneg -epos -eneu -eneg' \
 -glt_label 3 TvsE \
 -fout -tout \
 -bucket rall_func -fitts rall_fitts \
 -xjpeg rall_xmat.jpg -x1D rall_xmat.x1D

• symbolic GLT
• label the GLT

• statistic types to output

• the 9 visual stimulus classes were given using -stim_times
• it is important to include motion parameters as regressors

 this helps to exclude stimulus correlated motion artifacts
 the 6 motion parameters were given using -stim_file
 3dvolreg has previously been run, with the -1Dfile option

–15–

Regressor Matrix for This Script (via -xjpeg)
Baseline Visual stimuli Motion

• 18 baseline regressors
 linear baseline
 9 runs times 2 params

• 9 visual stimulus regressors
 3x3 stimulus design

• 6 motion regressors
 3 shifts, 3 rotations

–16–

Regressor Matrix for This Script (via -x1D)

baseline regressors: via 1dplot -sepscl xmat_rall.x1D'[0..18]'

–17–

Regressor Matrix for This Script (via -x1D)

1dplot -sepscl xmat_rall.x1D'[18..$]'

• motion regressors

• visual stimuli

–18–

Novel Features of 3dDeconvolve - 1
-concat '1D: 0 64 128 192 256 320 384 448 512'
• “File” that indicates where distinct imaging runs start inside the input file

 Numbers are the time indexes inside the file for start of runs
 In this case, a .1D file put directly on the command line

o Could also be a filename, if you want to store that data externally
-num_stimts 15
• We have 9 visual stimuli (+6 motion), so will need 9 -stim_times below
-stim_times 1
 '1D: 0.0 * | | | 120.0 | | | | | 60.0'
 'BLOCK(20,1)’
• “File” with 9 lines, each line specifying the start time in seconds for the

stimuli within the corresponding imaging run, with the time measured relative
to the start of the imaging run itself
• HRF for each block stimulus is now specified to go to maximum value of 1

(compare to graphs on previous slide)
 This feature is useful when converting FMRI response magnitude to be in

units of percent of the mean

–19–

Aside: the 'BLOCK()' HRF Model
• BLOCK(L) is convolution of square wave of duration L with “gamma
variate function” (peak value =1 at t = 4):

• “Hidden” option: BLOCK5 replaces “4” with “5” in the above
• Slightly more delayed rise and fall times

• BLOCK(L,1) makes peak amplitude of block response = 1

t
4
e
! t
/ [4

4
e
!4
]

h(t) = s
4
e
! s
/ [4

4
e
!4
]ds

0

min(t ,L)

"

Black = BLOCK(20,1)
Red = BLOCK5(20,1)

–20–

Novel Features of 3dDeconvolve - 2
-gltsym 'SYM: tpos -epos' -glt_label 1 TPvsEP
• GLTs are General Linear Tests
• 3dDeconvolve provides test statistics for each regressor and stimulus

class separately, but if you want to test combinations or contrasts of the β
weights in each voxel, you need the -gltsym option
• Example above tests the difference between the β weights for the
Positive Telephone and the Positive Email responses
 Starting with SYM: means symbolic input is on command line

o Otherwise inputs will be read from a file
 Symbolic names for each stimulus class are taken from -stim_label

options
 Stimulus label can be preceded by ++ or -- to indicate sign to use in

combination of β weights
• Goal is to test a linear combination of the β weights

• Tests if βtpos– βepos = 0
• e.g., does tpos get a bigger response than epos ?

• Quiz: what would 'SYM: tpos epos' test? It would test if βtpos+ βepos = 0

–21–

Novel Features of 3dDeconvolve - 3
-gltsym 'SYM: tpos tneu tneg -epos -eneu -eneg'
-glt_label 3 TvsE

• Goal is to test if (βtpos + βtneu + βtneg)– (βepos + βeneu + βeneg) = 0
• Regions where this statistic is significant have different
amounts of (average) BOLD signal change in the telephone
tasks versus the email tasks

• -glt_label 3 TvsE option is used to attach a meaningful
label to the resulting statistics sub-bricks
• Output includes the ordered summation of the β weights and
the associated statistical parameters (t- and/or F-statistics)

–22–

Novel Features of 3dDeconvolve - 4
 -fout -tout = output both F- and t-statistics for each

 stimulus class (-fout) and stimulus
 coefficient (-tout) — but not for the baseline
 coefficients (if you want baseline statistics: -bout)

• The full model statistic is an F-statistic that shows how well the
sum of all 9 input model time series fits voxel time series data
 Compared to how well just the baseline model time series fit
the data times (in this example, have 24 baseline regressor columns in
the matrix — 18 for the linear baseline, plus 6 for motion regressors)

• The individual stimulus classes also will get individual F- and/or
t-statistics indicating the significance of their individual
incremental contributions to the data time series fit
 e.g., Ftpos tells if the full model explains more of the data
variability than the model with tpos omitted and all other
model components included

–23–

Results of rall_regress Script

• Images showing
results from third GLT
contrast: ATvsHL

• Menu showing labels
from 3dDeconvolve run
• Play with these results
yourself!

–24–

Statistics from 3dDeconvolve
• An F-statistic measures significance of how much a

model component (stimulus class) reduced the
variance (sum of squares) of data time series residual
 After all the other model components were given

their chance to reduce the variance
 ResidualsResiduals ≡ data – model fit = errors = -errts
 A t-statistic sub-brick measures impact of one

coefficient (of course, BLOCK has only one coefficient)
• Full F measures how much the all signal regressors

combined reduced the variance over just the
baseline regressors (sub-brick #0)
• Individual partial-model F s measures how much

each individual signal regressor reduced data
variance over the full model with that regressor
excluded (e.g., sub-bricks #3, #6, #9)
• The Coef sub-bricks are the β weights (e.g., #1, #4,

#7, #10) for the individual regressors
• Also present: GLT coefficients and statistics

Group Analysis: will
be carried out on β or
GLT coefs from single-
subject analyses

